2,900 research outputs found

    Two-dimensional heterogeneous photonic bandedge laser

    Full text link
    We proposed and realized a two-dimensional (2D) photonic bandedge laser surrounded by the photonic bandgap. The heterogeneous photonic crystal structure consists of two triangular lattices of the same lattice constant with different air hole radii. The photonic crystal laser was realized by room-temperature optical pumping of air-bridge slabs of InGaAsP quantum wells emitting at 1.55 micrometer. The lasing mode was identified from its spectral positions and polarization directions. A low threshold incident pump power of 0.24mW was achieved. The measured characteristics of the photonic crystal lasers closely agree with the results of real space and Fourier space calculations based on the finite-difference time-domain method.Comment: 14 pages, 4 figure

    Delayed rupture of a pseudoaneurysm in the brachial artery of a burn reconstruction patient

    Get PDF
    A brachial artery pseudoaneurysm is a rare but serious condition that can be limb threatening. A number of reports have found that it may be the result of damage to the blood vessels around the brachial artery, either directly or indirectly, due to trauma or systemic diseases. We present our experience of delayed pseudoaneurysm rupture of the brachial artery in a rehabilitation patient with burns of the upper extremity who underwent fasciotomy and musculocutaneous flap coverage. We also provide a review of the brachial artery pseudoaneurysm

    N-(2,5-Dimeth­oxy­phen­yl)-N′-(4-hy­droxy­pheneth­yl)urea

    Get PDF
    In the title compound, C17H20N2O4, the 2,5-dimeth­oxy­phenyl unit is almost planar, with an r.m.s. deviation of 0.015 Å. The dihedral angle between the 2,5-dimeth­oxy­phenyl ring and the urea plane is 20.95 (8)°. The H atoms of the urea NH groups are positioned syn to each other. The mol­ecular structure is stabilized by a short intra­molecular N—H⋯O hydrogen bond. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    1-[3-(Hy­droxy­meth­yl)phen­yl]-3-phenyl­urea

    Get PDF
    In the title compound, C14H14N2O2, the dihedral angle between the benzene rings is 23.6 (1)°. The H atoms of the urea NH groups are positioned syn to each other. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network

    Leukoaraiosis is associated with pneumonia after acute ischemic stroke

    Get PDF
    Diagnostic criteria for stroke associated pneumonia based on the CDC criteria. (DOCX 25 kb

    Uterine Artery Doppler Velocimetry During Mid-second Trimester to Predict Complications of Pregnancy Based on Unilateral or Bilateral Abnormalities

    Get PDF
    We performed this study to evaluate uterine artery Doppler velocimetry (UADV) measurement of unilateral or bilateral abnormalities as a predictor of complications in pregnancy during the mid-second trimester (20-24 weeks). We enrolled 1,090 pregnant women who had undergone UADV twice: once between the 20th and 24th week (1st stage) and again between the 28th and 32nd week (2nd stage) of pregnancy, and then delivered at Yonsei Medical Center. UADV was performed bilaterally. Follow-up UADV was performed between the 28th and 32nd week, and the frequencies of pregnancy-induced hypertension (PIH), fetal growth restriction (FGR), and preterm delivery (before 34 weeks of gestation) were determined. Chi-squared and t-tests were used where appropriate, with p < .05 considered significant. According to the results of UADV performed between 20-24 weeks of gestation, 825 women (75.7%) were included in the normal group, 196 (18.0%) in the unilateral abnormality group, and 69 (6.3%) in the bilateral abnormality group. The incidences of FGR were 8.0%, 10.2%, and 26.1%, and the incidences of PIH were 0.1%, 3.6%, and 14.5%, respectively. The incidence of PIH was significantly lower in the normal group. The incidences of preterm delivery were 2.2%, 5.6%, and 8.7%, respectively. PIH developed in 46.7% of patients with bilateral abnormal findings in both the 1st and 2nd stage tests, and developed in none of the patients with normal findings in both tests. Abnormal results found by UADV performed between the 20-24th weeks of pregnancy, such as high S/D ratios regardless of placental location and the presence of an early diastolic notch, were associated with significant increases in the incidences of intrauterine growth restriction (IUGR) and PIH. This was true for both bilateral and unilateral abnormalities. Abnormal findings in bilateral UADV during the second trimester especially warrant close follow up for the detection of subsequent development of pregnancy complications

    Automatic Internal Stray Light Calibration of AMCW Coaxial Scanning LiDAR Using GMM and PSO

    Full text link
    In this paper, an automatic calibration algorithm is proposed to reduce the depth error caused by internal stray light in amplitude-modulated continuous wave (AMCW) coaxial scanning light detection and ranging (LiDAR). Assuming that the internal stray light generated in the process of emitting laser is static, the amplitude and phase delay of internal stray light are estimated using the Gaussian mixture model (GMM) and particle swarm optimization (PSO). Specifically, the pixel positions in a raw signal amplitude map of calibration checkboard are segmented by GMM with two clusters considering the dark and bright image pattern. The loss function is then defined as L1-norm of difference between mean depths of two amplitude-segmented clusters. To avoid overfitting at a specific distance in PSO process, the calibration check board is actually measured at multiple distances and the average of corresponding L1 loss functions is chosen as the actual loss. Such loss is minimized by PSO to find the two optimal target parameters: the amplitude and phase delay of internal stray light. According to the validation of the proposed algorithm, the original loss is reduced from tens of centimeters to 3.2 mm when the measured distances of the calibration checkboard are between 1 m and 4 m. This accurate calibration performance is also maintained in geometrically complex measured scene. The proposed internal stray light calibration algorithm in this paper can be used for any type of AMCW coaxial scanning LiDAR regardless of its optical characteristics
    corecore